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Given the resulting complexity of the ambient applications that one can form in the Ubiquitous
or Pervasive Computing domain it is required to abstract the intricacies of a heterogeneous sup-
porting environment (e.g., intrinsic characteristics of specific communication models) away from
the application logic. These applications will be characterized by the increasing ubiquity of inter-
actions between many possibly heterogeneous artifacts and services. This paper presents the
Plug/Synapse abstraction, which provides a conceptual model for building ubiquitous computing
applications in a high-level programming manner. GAS-OS is the software layer that implements the
Plug/Synapse model and the concepts encapsulated in GAS, a generic architectural style, which
can be used to describe everyday environments populated with computational artifacts. The paper
examines also the design and architecture of GAS-OS, which is the minimum set of modules and
functionalities that every device must afford, in order to be a ubiquitous computing artifact and
participate in artifact collections.
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1. INTRODUCTION

The vision of Ambient Intelligence (AmI) implies a seam-
less environment of computing, advanced networking tech-
nology, and specific interfaces.1 In one of its possible
implementations, technology becomes embedded in every-
day objects such as furniture, clothes, appliances, vehicles,
roads and smart materials, and people are provided with
the tools and the processes that are necessary in order to
achieve relaxing interactions with this environment. The
AmI environment can be considered to host several Ubiq-
uitous Computing (UbiComp) applications, which make
use of the infrastructure services provided by the environ-
ment and the services provided by the objects therein.

An important characteristic of AmI environments is
the merging of physical and digital space (i.e., tangible
objects and physical environments are acquiring a digital
representation). As the computer disappears in the envi-
ronments surrounding our activities, the objects therein
become augmented with Information and Communication
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Technology (ICT) components (i.e., sensors, actuators,
processor, memory, wire-less communication modules)
and can receive, store, process, and transmit information;
in the following, we shall use the term “artifacts” for this
type of augmented objects.

These objects may be new or improved versions of
existing objects, which by using the ambient technology,
allow people to carry out novel or traditional tasks in unob-
trusive and effective ways. The provision of conceptual
models and software mediators for creating, managing,
communicating with, and reasoning about, these new
ecologies (or UbiComp applications) is of paramount
importance, because people involvement is considered cru-
cial for the successful adoption of this new computing
paradigm.

This paper examines specifically the Plug/Synapse
model and the GAS-OS middleware. The former pro-
vides a conceptual model for building UbiComp applica-
tions in a high-level programming manner. We argue that
this model can be comprehended and applied via support-
ing tools both by developers and users to manipulate at
different levels of detail the characteristics of UbiComp
applications. In our approach applications consist of
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interacting tangible objects (artifacts), which carry the ICT
technology required. The GAS-OS middleware is coupled
with these artifacts and supports their collective operation
transparently to the user.

The conceptual model and the accompanying mid-
dleware are part of the Gadgetware Architectural Style
(GAS),2 which constitutes a generic framework, shared by
users and designers, for consistently describing, using, rea-
soning about UbiComp applications within the AmI envi-
ronment. GAS proposes the appropriate design vocabulary,
configuration, and semantic interpretation rules that facili-
tate the development of UbiComp applications. GAS con-
siders the process where people configure and use complex
collections of interacting artifacts, as having much in
common with the process where system builders design
software systems out of components. In the proposed
approach, the Plug/Synapse model provides a high-level
abstraction of the component interfaces and the composi-
tion procedure.

The rest of the paper is organized as follows. Section 2
discusses the motivation behind the specification of a con-
ceptual framework for composing UbiComp applications,
presents the Plug/Synapse model in a formal way and
examines its use through an example of everyday life sce-
nario. The design and architecture of the system software
that implements and validates the model is described in
Section 3. Section 4 presents some implementation details
based on the scenario previously introduced and provides a
performance evaluation of the system. Related approaches
and work are presented in Section 5. A discussion on the
approach presented regarding the end-user empowerment
for handling effectively intelligent environments as well as
on issues and problems that may increase the complexity
of the assembled systems is given in Section 6. Section 7
concludes this paper by presenting final statements and
future work.

2. THE CONCEPTUAL FRAMEWORK

2.1. Motivation

For the AmI vision to succeed, nobody should be excluded
from using UbiComp technology or accessing UbiComp
system services. Technology must be assisting rather than
disturbing people, because they cannot afford to be con-
sumed in learning how to “treat” technology.3 Thus, on
our way to realizing the AmI vision, together with the
realization of ubiquitous computing technology, we need
a conceptual framework that will bridge the gap between
system design and use. This model must be comprehen-
sible both by developers and end users so that the latter
are enabled to actively shape the ubiquitous computing
environments they live in. Moreover, the visibility of the
functionality of the UbiComp system must be controllable
by people; people must remain “in the loop,” so that they
build trust on the system.

The proposed framework carries along the basic techno-
logical concepts that allow for inter-associations of objects
(this can include a basic set of terminology and supporting
mechanisms in order to do this manipulation). To bring
these properties in the realm of UbiComp applications, the
basic concepts and elements of the component model need
to be expressed in a way that they can be easily com-
municated to people, thus achieving a controlled degree
of visibility into the—otherwise invisible—workings of a
ubiquitous environment.

In fact this model acts as a high level interface for
the user within a ubiquitous computing environment. It
becomes a communication medium, which people can
perceive, and by having access to it they can manipu-
late the ‘disappearing computers’ within their environ-
ment. To support people task models, we have adopted
the “jigsaw” metaphor, a widespread universal paradigm
of interconnectivity.4�5

The principles underlying the proposed conceptual
framework are:
Self-representation: the digital representation of arti-

fact’s physical properties is in tight association of its tan-
gible self.
Functional autonomy: artifacts function independently

of the existence of other artifacts.
Composeability: artifacts can be used as building blocks

of larger and more complex systems.
Changeability: artifacts that possess or have access to

digital storage can change the digital services they offer.
Up to now, the ways that an object could be used

and the tasks it could participate in have usually been
determined by its shape. Artifacts overcome this limita-
tion by producing descriptions of their properties, abilities
and services in the digital space, thus becoming able to
improve their functionality by participating in composi-
tions, learning from usage, becoming adaptive and context
aware, etc.

The research hypothesis is that even if an individual arti-
fact has limited functionality, it can achieve more advanced
behavior when grouped with others. Then the aim is to
look at how collections of artifacts can be configured to
work together in order to provide behavior or functionality
that exceeds the sum of their parts.

2.2. The Plug/Synapse Model for Composing
UbiComp Applications

Our approach regards the everyday environment consist-
ing of a multitude of artifacts, which people combine and
recombine in ad-hoc, dynamic ways. By providing uni-
form abstractions and a supporting middleware, we treat
objects as components of a UbiComp application. Artifacts
can be considered as information appliances6 extended
with composeability. Each artifact possesses a digital rep-
resentation of its properties, which it makes available to
other artifacts. Based on these representations, artifacts can
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be associated in order to achieve synthetic functionality.
People are given ‘things’ with which to make ‘new things.’
The behavior of these ‘new things’ (i.e., UbiComp appli-
cations) is neither static, nor random, because it is guided
by how applications are to be used.

The basic definitions encapsulated in our conceptual
framework are:
Artifacts: An artifact is a tangible object which bears

digitally expressed properties; usually it is an object or
device augmented with sensors, actuators, processing, net-
working unit, etc., or a computational device that already
has embedded some of the required hardware components.
Software applications running on computational devices
are also excessively considered to be artifacts. Examples
of artifacts are furniture, clothes, air conditioners, cof-
fee makers, a software digital clock, a software music
player, etc.
Artifact compositions: Two or more artifacts (simple or

composite) can be combined in an artifact composition.
Such compositions are the tangible bearers of UbiComp
applications and are regarded as service compositions;
their realization can be assisted by end-user tools.
Properties: Artifacts have properties, which collectively

represent their physical characteristics, capabilities, and
services. A property is modeled as a function that either
evaluates an artifact’s state variable into a single value or
triggers a reaction, typically involving an actuator. Some
properties (i.e., physical characteristics, unique identifier)
are artifact-specific, while others (i.e., services) may be
not. For example, attributes like color/shape/weight repre-
sent properties that all physical objects possess. The ser-
vice light may be offered by different objects. A property
of an artifact composition is called an emergent property.
All of the artifacts properties are encapsulated in a prop-
erty schema which can be send on request to other arti-
facts, or tools (e.g., during an artifact discovery).
Functional schemas: An artifact is modeled in terms

of a functional schema: F = �f1� f2� � � � � fn�, where each
function fi gives the value of an observed property i in
time t. Functions in a functional schema can be as simple
or complex is required to define the property. They may
range from single sensor readings to rule-based formulas
involving multiple properties, to first-order logic so that
we can quantify over sets of artifacts and their properties.
State: The values for all property functions of an artifact

at a given time are the state of the artifact. For an artifact
A, the set P�A
= ��p1� p2� � � � � pn
�pi = fi�t
� represents
the state space of the artifact. Each member of the state
vector represents a state variable. The concept of state
is useful for reasoning about how things may change.
Restrictions on the value domain of a state variable are
then possible.
Transformation: A transformation is a transition from

one state to another. A transformation happens either as a
result of an internal event (i.e., a change in the state of a

sensor) or after a change in the artifact’s functional context
(as it is propagated through the synapses of the artifact).
Plugs: Plugs are the constructs that we use to represent

properties of artifacts in the digital space. Plugs are char-
acterized by their direction and data type. Plugs may be
output (O) in case they manifest their corresponding prop-
erty (e.g., as a provided service), input (I) in case they asso-
ciate their property with data from other artifacts (e.g., as
service consumers), or I/O when both happens. Plugs also
have a certain data type, which can be either a semantically
primitive one (e.g., integer, boolean, etc.), or a semanti-
cally rich one (e.g., image, sound, etc.). In this paper, only
primitive data types are considered. From the user’s per-
spective, plugs make visible the artifacts’ properties, capa-
bilities, and services to people and to other artifacts.
Synapses: Synapses are associations between two com-

patible plugs. In practice, synapses relate the functional
schemas of two different artifacts. When a property of
a source artifact changes, the new value is propagated
through the synapse to the target artifact. The initial
change of value caused by a state transition of the source
artifact causes finally a state transition to the target artifact.
In that way, synapses are a realization of the functional
context of the artifact.

To achieve collective desired functionality, one forms
synapses by associating compatible plugs, thus composing
applications using artifacts as components. Two levels of
plug compatibility exist: Direction and data type compat-
ibility. According to direction compatibility output or I/O
plugs can only be connected to input or I/O plugs. Accord-
ing to Data type compatibility, plugs must have the same
data type to be connected via a synapse. However, this is
a restriction that can be bypassed using value mappings
in a synapse (Fig. 2). No other limitation exists in mak-
ing a synapse. Although this may mean that meaningless
synapses are allowed, it has the advantage of letting the
user create associations and cause the emergence of new
behaviours that the artifact manufacturer may have never
thought of. Meaningless synapses can also be seen as hav-
ing much in common with runtime errors in a program,
where the program may be compiled correctly but does
not manifest the desired by the programmer behavior.

The use of high-level abstractions, for expressing such
associations, allows the flexible configuration and recon-
figuration of UbiComp applications. It only requires that
artifacts are able to communicate and they have to run the
GAS-OS middleware in order to “comprehend” each-other,
so that people can access their services, properties, and
capabilities in a uniform way. People in that way would
not need to be engaged in any type of formal “program-
ming” in order to achieve the desired functions.

Our model supports three abstraction levels:
Network independence: the Plug/Synapse model is

independent of the underlying protocols, needed for
example to route messages or to discover resources in real-
ization of an application.

J. Ubiquitous Computing and Intelligence 1, 1–13, 2006 3

daisy
Rectangle



A Conceptual Model and the Supporting Middleware for Composing Ubiquitous Computing Applications Drossos et al.

Physical independence: the services offered by an arti-
fact are independent of the artifact itself; this does not
hold for its physical characteristics. Thus the creation of
artifact compositions does not require the continuous pres-
ence of an artifact (provided they do not involve physical
characteristics).
Semantic independence: the description of artifact com-

positions or applications is based only on the types of the
participating plugs and is independent of the way the plugs
are realized in each artifact.

The approach adopted is that people live in an envi-
ronment populated with artifacts; they have a certain need
or task, which they think can be met or carried out by
(using) a combination of services and capabilities; then,
they search for artifacts offering these services and capa-
bilities as plugs; they select the most appropriate ones and
combine the respective plugs into functioning synapses; if
necessary, they manually adapt or optimize the collective
functionality.

2.3. The End-User’s Perspective: Composing a
Real-Life Home Application

In the near future, people will be living and carry their
activities and tasks in an environment populated with arti-
facts. As is the usual case, in order to carry these activities
out, people will look for services or objects they can use.
Using our approach, people will be able to carry out their
activities using artifact combinations. All they need to do
is mentally decompose the activity into tasks which can
be supported by simple services and look for the artifacts
that have appropriate properties. Finally, they select the
most appropriate ones and combine the respective plugs
into functioning synapses; if necessary, they can manu-
ally adapt or optimize the collective functionality. Because
the composition of artifacts is regarded as a high-level
programming task, “run-time” errors may appear causing
artifact compositions not to function properly as expected.
Optimization is a trial-and-error process: people adapt the
synapses and the mappings in order to achieve the desired
functionality. To support them in this process and to hide
the complexity of artifact interactions, we have developed
user friendly tools that implement the conceptual frame-
work (Figs. 1 and 2).

These concepts can be better illustrated if we consider
the Study application example, which we’ll follow
throughout this paper. Let’s take a look at the life of
Patricia, a 27-year old single woman, who lives in a small
apartment near the city centre and studies Spanish litera-
ture at the Open University. A few days ago she passed
by a store, where she saw an advertisement about these
new augmented artifacts. Pat decided to enter. Half an
hour later she had given herself a very unusual present:
a few furniture pieces and other devices that would turn
her apartment into a smart one! On the next day, she was
anxiously waiting for the delivery of an eDesk (it could

Fig. 1. Combined artifacts in the UbiComp application editor.

sense objects on top, proximity of a chair), an eChair (it
could tell whether someone was sitting on it), a couple of
eLamps (one could remotely turn them on and off), and
some eBook tags (they could be attached to a book, tell
whether a book is open or closed). Pat had asked the store
employee to pre-configure some of the artifacts, so that she
could create a smart studying corner in her living room.
Her idea was simple: when she sat on the chair and she
would draw it near the desk and then open a book on it,
then the study lamp would be switched on automatically.
If she would close the book or stand up, then the light
would go off.

The behavior requested by Pat requires the combined
operation of the following set of artifacts: eDesk, eChair,
eDeskLamp, and eBook. The properties and plugs of these
artifacts are shown in Table I and are manifested to Pat
via the UbiComp Application editor tool,7 an end-user tool
that acts as the mediator between the Plug/Synapse con-
ceptual model and the actual system. Using this tool Pat
can combine the most appropriate plugs into functioning
synapses as shown in Figure 1.

Fig. 2. Setting mappings between the eDesk.ReadingActivity and
eDeskLamp.Light plugs.
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Table I. Analyzing the UbiComp application.

Artifact Properties Plugs Functional schemas

eChair —Sensing chair occupancy Occupancy: eChair.C1 ← read(pressure-sensor)
capability (C1) {OUT|Boolean} eChair.C2 is an attribute

—Transmitting object type Occupancy ← {eChair.C1, eChair.C2}
capability (C2)

eBook —Sensing open/close Opened eBook.C1 ← read(bend-sensor)
capability (C1) {OUT|Boolean} eBook.C2 is an attribute

—Transmitting object type Opened ← {eBook.C1, eBook.C2}
capability (C2)

eDesk —Sensing objects on top —BookOpenOnTop: eDesk.C1 ← read(RFID-sensor)
capability (C1) {IN|Boolean} eDesk.C2 ← read(proximity-sensor)

—Sensing proximity of —ChairInFront: IF eDesk.C1 = eBook.C2 AND eBook.C1 = TRUE
objects capability (C2) {IN|Boolean} THEN BookOpenOnTop ← TRUE ELSE BookOpenOnTop ← FALSE

—ReadingActivity: IF eDesk.C2 = TRUE AND eChair.C1 = TRUE
{OUT|Boolean} THEN ChairInFront ← TRUE ESLE ChairInFront ← FALSE

eDeskLamp Light service (S1) Light: IF BookOpenOnTop = TRUE AND ChairInFront = TRUE THEN
{IN|Enumeration} ReadingActivity ← TRUE ELSE ReadingActivity ← FALSE

IF eDesk.ReadingActivity THEN S1(on) ELSE S1(off)

The properties, plugs, and functional schemas of each artifact participating in the study application.

In the case of the synapse between eDesk.Reading
Activity and eDeskLamp.Light plugs, a data type compat-
ibility issue arises. To make the synapse work, Pat can use
the UbiComp Editor to define mappings that will make the
two plugs collaborate, as shown in Figure 2.

The definition of the functional schemas of the artifacts,
that is the internal logic that governs the behavior of each
artifact either when its state changes or when a synapse is
activated are predefined by the artifact developer (for our
example, they are shown in Table I). Rules that require
identification of the remote artifact, can be specified using
the property schema information which is available in the
representation of each of the two artifacts that participate
in a synapse.

The eBook, eChair, and eDesk comprise an artifact com-
position whose emergent property is manifested via the
ReadingActivity plug. This plug allows the connection of
this composition to other artifacts or compositions. Any
artifact composition can be edited to extend the function-
ality of the application. For example, consider that Pat also
buys an eClock and wants to use it as a 2 hour reading
notification. The eClock owns an alarm plug that when
activated, via a synapse, counts the configurable number
of hours and then rings the alarm. To implement her idea,
what Pat has to do is to use the UbiComp Application edi-
tor to create a synapse between the ReadingActivity plug
of the eDesk and the alarm plug of the eClock and specify
the number of hours in the Properties dialog box of the
eClock.

3. GAS-OS MIDDLEWARE

Within an AmI environment, a UbiComp application may
be composed of a number of heterogeneous artifacts
or devices, which may be stationary or portable. Those

artifacts and devices have different, dynamically chang-
ing capabilities and ways to use them; yet, all of them
can communicate. We also assume that no specific net-
working infrastructure exists, thus ad-hoc networks are
formed. The physical layer networking protocols used are
highly heterogeneous ranging from infrared communica-
tion over radio links to wired connections. Since every
node serves both as a client and as a server (devices can
either provide or request services at the same time), com-
munication between artifacts can be considered as Peer-to-
Peer (P2P).8

To cope with heterogeneity and provide a uniform
abstraction of artifact services and capabilities we
have introduced the GAS-OS middleware that abstracts
the underlying data communications and sensor/actuator
access components of each part of a distributed system, so
that a UbiComp application appears as a single integrated
computing facility. GAS-OS follows the Message-Oriented
Middleware (MOM) approach, by providing non-blocking
message passing and queuing services. Furthermore, to
handle the need to adapt to a broad range of devices, we
have adapted ideas from micro-kernel design9 where only
minimal functionality is located in the kernel, while extra
services can be added as plug-ins.

The use of Java as the underlying platform of the
middleware decouples GAS-OS from typical operations
like memory management, networking, etc. Furthermore,
it facilitates the deployment on a wide range of devices
from mobile phones and PDAs to specialized Java
processors.

The combination of the Java platform and the GAS-
OS middleware, hide the heterogeneity of the underlying
artifacts, sensors, networks, etc., and provides the means to
create large scale systems based on simple building blocks.
The next two sections present the role of GAS-OS into the
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Fig. 3. Artifact high-level architecture.

high level design of an artifact, as well as the architecture
of GAS-OS.

3.1. The Role of GAS-OS

Figure 3 shows the high-level architecture of an artifact.
A Sensor/Actuator network together with custom con-

trol circuitry (e.g., FPGA, PIC micro-controller based
boards) are responsible for converting artifact data (e.g.,
pressure, luminosity, etc.) to digital ones and vice versa.
In the case of electronic devices, this circuitry is usually
embedded in the device. In both cases digital data are
exported to a computational unit using proper hardware
interfaces (e.g., RS232, USB, etc.). Although digital data
are acquired from the hardware in a uniform way, via the
Java Platform, they may be analyzed and handled in a dif-
ferent way for each artifact; thus, a specific GAS-OS I/O
driver must be implemented per artifact. A GAS-OS driver
is a set of routines linked into the kernel, which are used as
part of the mechanism to operate a specific hardware mod-
ule. Separating the responsibilities of the driver from the
middleware facilitates the addition of new hardware mod-
ules without changing the middleware. In the same way,
via proper h/w interfaces and the Java platform, data from
other artifacts are available to the GAS-OS middleware via
the Connectivity API.

The I/O driver and connectivity interfaces administer the
communication intricacies (e.g., sensor device communi-
cation protocols, routing protocols, etc.) in terms of the
sensory and interaction communication views respectively
of the artifact. Thus, we achieve technology independence
and adaptability.

In our approach, an application is realised through the
cooperation of artifacts in the form of established logical
communication links (synapses) between artifacts acting
either as services providers or as service consumers, where
services are being manifested through plugs. The GAS-
OS kernel implements the concepts of the Plug/Synapse
model and the mechanisms to support the composition of
UbiComp applications, as explained in more detail in the
following section.

Security Manager
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Fig. 4. GAS-OS modular architecture.

3.2. GAS-OS Architecture

The outline of the GAS-OS architecture is shown in
Figure 4. The GAS-OS kernel is designed to support only
accepting and dispatching messages, managing local hard-
ware resources (sensors/actuators), and implementing the
Plug/Synapse interaction mechanism. The kernel is also
capable of managing service and artifact discovery mes-
sages in order to facilitate the formation of the proper
synapses.

The GAS-OS kernel encompasses a P2P Communica-
tion Module, a Process Manager, a State Variable Man-
ager, and a Property Evaluator module as shown in
Figure 4. The P2P Communication Module is responsi-
ble for application-level communication between the vari-
ous GAS-OS nodes. This module translates the high-level
requests/replies into messages and by using low-level net-
working protocols it dispatches them to the corresponding
remote peers. The Process Manager is the coordinator
module of GAS-OS. Some of its most important tasks
are to manage the processing policies, to accept and
serve requests set by the other modules of the kernel
or to initiate reactions in collaboration with other mod-
ules, tasks which collectively serve the realization of the
Plug/Synapse model. Furthermore, it is responsible for
handling the memory resources of an artifact and caching
information of other artifacts to improve communication
performance when service discovery is required. The State
Variable Manager handles the runtime storage of artifact’s
state variable values, reflecting both the hardware environ-
ment (sensors/actuators) at each particular moment (primi-
tive properties), and properties that are evaluated based on
sensory data and P2P communicated data (composite prop-
erties). The Property Evaluator is responsible for the eval-
uation of artifact’s composite properties according to its
Functional Schema. In its typical form the Property Evalu-
ator is based on a set of rules that govern artifact transition
from one state to another. The rule management can be
separated from the evaluation logic by using a high-level
rule language and a translator that translates high-level rule
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specifications to XML that can be exploited then by the
evaluation logic.

Following a layered modular architecture allows the
replacement of a module without affecting the functional-
ity of the rest provided that the APIs between them remain
consistent. This principle holds for the different layers of
the architecture as well as within each layer. The modular
design of GAS-OS, for example, allows the integration of
up-to-date algorithms and protocols in the form of plug-in
modules.

Extending the functionality of the GAS-OS kernel can
be achieved through plug-ins, which can be easily incorpo-
rated to an artifact running GAS-OS, via the plug-in man-
ager. Using ontologies and the ontology manager plug-in
all artifacts can use a commonly understood vocabulary
of services and capabilities, in order to mask heterogene-
ity in context understanding and real-world models.10 In
that way, high-level descriptions of services and resources
independent of the context of a specific application are
possible, facilitating the exchange of information between
heterogeneous artifacts as well as the discovery of ser-
vices. The security manager plug-in on the other hand,
when developed, will be responsible for realizing the
security policies of each artifact. These policies will be
encoded as rules in the ontology, thus becoming directly
available to the Process Manager. The security manager
will mediate information exchange via synapses in order
to ensure that security policies are respected.

4. IMPLEMENTATION

The current version of GAS-OS has been implemented
in the Java Personal Edition (PE) that is fully compatible
with the Java Standard Edition 1.1.8. So far, GAS-OS
has been tested in laptops, IPAQs and finally in the EJC
(Embedded Java Controller) board EJC.11

The following sections will describe implementation
details concerning three basic functions supported by
GAS-OS in order to realize ubiquitous computing appli-
cations using the example introduced in Section 2. First,
synapse management, a mechanism that handles the pro-
cess of establishing logical channels (synapses) among
artifacts, then inter-artifact communication, a mechanism
that supports the formation and operation of synapses at
the network layer by establishing peer-to-peer connections
over the physical layer, and finally, the hardware manage-
ment mechanism, which describes how GAS-OS handles
the sensors and actuators of an artifact in order to satisfy
the high-level behavior dictated by the association with
other artifacts.

4.1. Synapse Management

The management of synapses is performed by the Pro-
cess Manager module. The Process Manager collaborates
with the Communication Module and the State Variable

Manager (Fig. 4), and sets up an event based internal
messaging system that combines input from sensors and
actuators with input received from other artifacts, via the
network.

As an example, let’s consider the synapsing process
among the ReadingActivity plug of the eDesk and the
Light plug of the eLamp:
Synapse request: Synapse request occurs after an arti-

fact has discovered a second one, thus property schemas
of each artifact are available to each other. The eDesk
sends a “Connection Request” message to the eLamp.
The message contains information concerning the eDesk
and its ReadingActivity plug as well as the name of the
Light plug.
Synapse response: When the eLamp receives the mes-

sage it first checks the plug compatibility of the Reading-
Activity and Light plugs. In the example, the Reading plug
is output and the Light plug is input, so the direction com-
patibility test is passed. Data type incompatibility does
not hapt the synapsing process, however it needs to be
dealt via the use of mappings. Following, an instance of
the ReadingActivity plug is created in the eLamp (as a
local reference) and a positive response is sent back to the
eDesk. The instance of the ReadingActivity plug is notified
for changes by its remote counterpart plug and this inter-
action serves as an intermediary communication channel.
In case of a negative plug compatibility test, a negative
response message is sent to the eDesk, while no instance
of the ReadingActivity plug is created. When the eDesk
receives a positive response, it also creates an instance of
the Light plug, and the connection is established. Figure 5
summarizes the whole procedure.
Synapse activation: After connection has been estab-

lished, the two plugs are capable of exchanging data. Out-
put plugs (ReadingActivity) use specific objects, called
shared objects (SO), to encapsulate the plug data to send,
while input plugs (Light) use specific event-based mech-
anisms, called shared object listeners (SOL), to become
aware of incoming plug data. When the value of the shared
object of the ReadingActivity plug changes the instance of
the Light plug in the eDesk is notified and a synapse acti-
vation message is sent to the eLamp. The eLamp receives

eDesk

Synapse Request

Positive Response
Light plug
Instance

Reading
Activity
plug

Light
plug

ACK

ACK

eLamp

ReadingActivity
plug Instance

Plug
Compatibility

Fig. 5. Synapse establishment between plugs Reading and
Light_Switch.
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eDesk

Light plug
Instance

Reading
Activity
plug

Light
plug

SO changed

Update SO

SOL notified

SOL notified

Synapse Activation

eLamp

Reading Activity
plug Instance

Fig. 6. Synapse activation.

the message and changes the shared object of its Reading-
Activity plug instance. This, in turn, notifies the target
Light plug, which reacts as specified (Fig. 6).
Synapse disconnection: Finally, if one of the two con-

nected plugs breaks the synapse, a synapse disconnection
message is sent to the remote plug in order to also termi-
nate the other end of the synapse. Synapse disconnection
can be either initiated explicitly by the user, or indirectly
if one of the two artifacts becomes unavailable (e.g., goes
out of range, its battery fails, etc.).

4.2. Inter-Artifact Communication

The Communication Module is responsible for com-
munication between different artifacts. This module,
implements application-level protocols for connectionless
ad-hoc communication as well as mechanisms for inter-
nal diffusion of information exchanged. Peer-to-peer com-
munication is implemented adopting the basic principles
and definitions of JXTA.12 Peers, pipes, and endpoints are
combined into a layered architecture that provides different
levels of abstraction throughout the communication pro-
cess. Peers implement protocols for resource and service
discovery, advertisement, routing as well as the queuing
mechanisms to support asynchronous message exchange.
In order to avoid large messages and as a consequence traf-
fic congestion in the network, XML-based messages are
used to wrap the information required for each protocol.
Pipes correspond to the session and presentation layers of
the ISO-OSI reference model, implementing protocols for
connection establishment between two peers, supporting
multicast communication for service and artifact discov-
ery, while at the same time guaranteeing reliable delivery
of messages. In cases where reliable network protocols are
used in the transport layer (e.g., TCP/IP), pipes are reduced
to acknowledging for application-level resource availabil-
ity (e.g., sending synapse request message to an incom-
patible plug will return a NACK message). Endpoints are
considered as the fundamental networking units and are
associated to specific network resources (e.g., a TCP port).
According to the transport layer chosen we can have many
different endpoints (e.g., IP-based, Bluetooth, IrDA, etc.),
which can also serve as a bridge for different networks.
Finally, in order to discover and use services and arti-
facts beyond the reachability of wireless protocols (e.g.,
RF, bluetooth), we have designed a hybrid routing protocol

GAS-OS
kernel

Comm

GAS-OS
kernel

Comm

Network
Synapse Request

ACK

ACK

Positive Response

Reading
Activity
plug

Light
plugeDesk eLamp

eDesk Endpoint
IP:150.140.2.50

eLamp Endpoint
IP:150.140.2.66

Fig. 7. From Plug/Synapse interactions to p2p communication.

based on ZRP.13 Our protocol borrows the concept of zone
creation and maintenance of ZRP and switches between
DSR14 and DSDV15 inside each zone depending on certain
QoS criteria, while for intra-zone routing DSR is used.
Our hybrid protocol combines a proactive and a reactive
part, trying to minimize the sum of their respective over-
heads and scales very well when the traffic or the mobility
is increased.

Figure 7 shows the p2p communication between the
eDesk and eLamp artifacts described in the example intro-
duced in Section 2. Both the eDesk and the eLamp are
considered to own a communication module with an IP-
based (dynamically determined) Endpoint. Plug/Synapse
interactions (e.g., synapse establishment) are translated to
XML messages by the communication module and deliv-
ered to the remote peer at the specified IP address.

4.3. Interfacing with the Artifact Hardware

The interfacing of the artifact with its hardware (sensors/
actuators) is performed as collaboration between the GAS-
OS I/O driver and the State Variable Manager (SVM) mod-
ule of GAS-OS. SVM holds two separate structures, one
for the Read Only (RO) and one for the Read Write (RW)
state variables. State Variables reflect the state of an arti-
fact’s hardware, like sensors and actuators. For example,
the eDesk has among others, a proximity sensor to sense
that a chair is near the desk, and the eLamp has one bulb
actuator, both reflected inside GAS-OS as state variables
in the SVM.

Through communication with the eDesk GAS-OS driver
(Fig. 8) the eDesk’s SVM retrieves all the sensor infor-
mation of the eDesk and registers itself as a listener for
changes of the environment. Moreover, it communicates
with the Process Manager to promote the eDesk-eLamp
communication as it feeds the ReadingActivity plug with
new data coming from the hardware, which finally result
in the ReadingActivity-Light synapse. On the other end of
the synapse the eLamp receives data from the Light plug
and through the Process Manager the data are translated
to low level actuator data, resulting in the eLamp’s bulb
actuator.
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Sensors
Proximity

sensor
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GAS-OS
eDesk driver

RO State Variable Value

proximity true

other sensors ...
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Hardware

State Variable Manager
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Process Manager

notify

eDesk GAS-OS

true

Actuators
bulb

eLamp
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eLamp driver

RW State Variable Value

bulb true

eLamp
Hardware

State Variable Manager

Light

Process Manager

update

eLamp GAS-OS

31

Synapse
properties

Fig. 8. Communication with hardware.

The matching of the true/false values of the Reading-
Activity plug with the enumerated values {1 � � �31} of the
Light plug, is done by configuring the properties of the
synapse, as we have seen in the example of Section 2.
So for example by mapping the true state of the eDesk
to value 31 of the eLamp and false to 0 we have the
following desired behavior. The Mappings structure holds
records where the key is the Synapse itself and the con-
tent is a number of values-to-states mappings. The Process
Manager uses these mappings to filter the incoming infor-
mation from input plugs and give a specific meaning to
the incoming data.

4.4. Performance Evaluation

To estimate the performance of GAS-OS and its appropri-
ateness to support the execution of ubiquitous applications,
a performance and scalability analysis based on theoreti-
cal analysis as well as on experimental data was carried
out. The results involve the memory requirements of GAS-
OS and the throughput for the case of artifact discovery
in relation to the available services (plugs). Finally a pure
experimental measurement of the synapsing process and
communication takes place in order to obtain an indication
of the time required to set up a ubiquitous application.

The code size of the current implementation of GAS-OS
is approximately 200 KB. Measuring the memory foot-
print is crucial in order to indicate that GAS-OS can be
executed on resource constraint devices. We measured the
memory footprint of the GAS-OS kernel running upon
the Sun Personal Java on a Compaq IPAQ PDA reference
system.

First, measurements were done by instrumented special
measurement code inside GAS-OS and second using the
JProbe Memory Profiler tool.16 In both cases results seem
to converge to approximately 23 Kbytes of memory, while
during runtime more memory may be allocated depending
on the application (e.g., number of plugs, synapses, device
capabilities, etc.).

As plugs and synapses are mainly what increases mem-
ory during the execution of an application, we studied the
relation between the number of plugs and the number of
synapses that participate for constraint amounts of mem-
ory. Maximum memory allocation is achieved when each
plug participates in only one synapse (Fig. 9(a)). The more
plugs participating in one synapse, the more the allocated
memory until we reach the memory constraint. From this
point and on (peaks) more synapses can only be achieved
if distributed to fewer plugs.

In order to measure the throughput of GAS-OS we con-
sider the process of discovering artifacts with a certain
number of plugs. Studying the discovery process gives an

(a)

(b)

Fig. 9. (a) Maximum number of synapses when constraining memory
versus the number of plugs that can participate. (b) Number of eGts that
can be discovered in a certain period of time versus the number of plugs.
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Table II. Synapsing and communication times.

Time (ms) 1st synapse Last synapse Data exchange

Min 651 841 63
Max 1632 1422 396
Average 914 1019 183.2

Min, Max, and average times in milliseconds to create the 1st and the last synapse in
a UbiComp application of 5 artifacts with a total of six synapses. After creating the
1st synapse only a few milliseconds are required to create the rest of the synapses,
while the average time of approximately 1 sec for all six synapses is acceptable.
For communication between 2 artifacts having a synapse, the average time is only
a few milliseconds, which is acceptable for real time applications.

indication of the number of artifacts that will be discov-
ered in a certain period of time, and as a consequence
how long will the user have to wait in order to discover
his ubiquitous environment. The number of artifacts that
can be discovered in successive time intervals, versus the
number of plugs (Fig. 9(b)): in order to have maximum
performance overhead, we have to get to a large number
of plugs per artifact.

Using code instrumentation, we measured the average
time for making a synapse and for communicating in an
application where five artifacts are inter-connected with
six synapses (Table I). These measurements include the
overhead of the IEEE 802.11b protocol, while messages
exchanged vary from a few bytes to 1 Kbyte. Synapse
times refer to the amount of time needed from the point
the user specifies a synapse up to the time this synapse is
completed. In cases where the artifacts, specified to form
a synapse, are not aware of each other, a discovery phase
is also included in the overall synapsing process. Thus, the
min synapse time refers to a synapse without a discovery,
while the max to a synapse with a discovery overhead. It
is important that after synapses are established (UbiComp
applications set-up) communication between artifacts is
fast, satisfying our requirement for real time response.

5. RELATED WORK

Many of the existing systems focus on the use of simple
input languages or metaphor-based GUI interfaces to ease
the process of development for end-users who have little
or no programming experience. For example, the work by
Humble et al.17 uses a “jigsaw puzzle” GUI metaphor in
which individual devices and sensors are represented by
puzzle piece-shaped icons that the user “snaps” together
to build an application. While the familiar to our approach
metaphor is comprehensible, the interactions are simplified
to sequential execution of actions and reactions depending
on local properties (e.g., sensor events), which limits the
expressibility of the user’s ideas. No emergent properties
exist (i.e., taking into account other devices’ properties),
while the absence of rule-based logic results in very sim-
ple behaviours. Similar approaches we have observed in
the work of Truong et al.18 that provides a pseudo-natural
language interface, using a fridge magnet metaphor and

the browser approach of Speakeasy,19 where components
are connected using a visual editor based on file-system
browsers.

Other research efforts are emphasizing on the design
of ubiquitous computing architectures. In the context of
the Disappearing Computer initiative, project “Smart-Its”20

aims at developing small devices, which, when attached to
objects, enable their association based on the concept of
“context proximity.” Objects are usually everyday devices
such as cups, tables, chairs, etc., equipped with various
sensors, as well as with a wireless communication module
such as RF or Bluetooth. The goal is to add smartness to
real-world objects in a post-hoc fashion by attaching small,
unobtrusive computing devices to them. While a single
Smart-It is able to perceive context information from its
integrated sensors, a federation of ad hoc connected Smart-
Its can gain collective awareness by sharing this informa-
tion. However, the “augmentation” of physical objects is
not related in any way with their “nature,” thus the objects
ends up to be just physical containers of the computational
modules they host.

BASE21 represents micro-kernel based middleware
that is structured in multiple components that can be
dynamically extended to interact with different existing
middleware solutions (e.g., CORBA) and different com-
munication technologies. While these approaches provide
support for heterogeneity and a uniform abstraction of ser-
vices the application programming interface requires spe-
cific programming capabilities (e.g., proxies are used as
the application programming interface) to building appli-
cations. In contrast our Plug/Synapse model provides a
high level programming model that even the end-user is
capable of using it intuitively.

Proem22 is a p2p platform supporting the application
developer in creating and deploying applications. The
objects managed by Proem are mainly electronic devices,
such as PDAs and mobiles, and are abstracted as entities.
Connectivity between entities is determined by proxim-
ity, while connected entities can form communities. Proem
defines communication protocols that define the syntax
and semantics of messages exchanged between peers, as
well as an application environment including tools, APIs
and runtime structures. However, Proem does not con-
sider multi-hop mobile ad hoc networks, while proxim-
ity poses severe limitations in the formation of UbiComp
applications.

Garlan et al. have taken a novel approach to managing
ubiquitous computing environments with Project Aura.23

Aura aims to “minimize distractions on a user’s atten-
tion, creating an integrated environment that adapts to the
user’s context and needs.” Aura’s goal is to provide each
user with an invisible halo of computing and information
services that persists regardless of location. Each user is
represented by its personal aura; when a user enters a
new environment his or her aura marshals the appropriate
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resources to support the user’s tasks. Aura proposes a pro-
gramming model for task-based computing as well as an
infrastructure that moulds itself to the user’s task or needs
with little need for user intervention. However, the mid-
dleware is limited to provide adaptation only at the task
level i.e., at the service level.

Aura is a representative work of UbiComp middleware
systems trying to establish some kind of integrated, pre-
installed technical infrastructure in a physical area, e.g., a
room or building, often called an intelligent environment
(IE), in which the user and his/her mobile devices are inte-
grated on-the-fly when entering the area. The IE offers a
huge variety of different capabilities and middleware ser-
vices that can be used, once the device of the user is inte-
grated.

Another approach of the same category is project
iROS,24 in that it considers physically bounded spaces such
as offices and meeting rooms, and both of them provide
low-level functionality. The iROS project aims to build a
middleware for pervasive computing systems that enables
platform and application portability, device extensibility,
robustness and, ease of administration. The system is mod-
eled as an ensemble of entities that interact with each other
using message passing. However, iROS does not provide
explicit support for application development and manage-
ment; instead, they rely on service synchronization using
their event heap.

Finally, traditional infrastructures like CORBA, Jini,
UPNP, and the Cooltown infrastructure25 have been used
to address the needs of application developers targeting
distributed systems. However, we have found that such
systems are either too heavyweight to be applied to mobile
hosts, or are not powerful and flexible enough to address
the requirements of such systems. Furthermore, most of
them are language or system dependent, and on the other
hand, they try to provide as much functionality as possi-
ble, which leads to very complex and resource consuming
systems, unsuitable for small devices. Finally, the focus of
these infrastructures has by necessity been on the devel-
opment of appropriate protocols and techniques to allow
devices to discover each other and make use of the various
facilities they offer. Limited consideration has been given
to how inhabitants may see these devices or how they may
exploit them to configure novel arrangements meeting par-
ticular household demands.

All the above have given us a glimpse of what the
UbiComp-enabled future might perhaps bring. As Weiser
noted in his seminal paper, we don’t really know what’s
coming:26 ‘Neither an explication of the principles of ubiq-
uitous computing nor a list of the technologies involved
really gives a sense of what it would be like to live in a
world full of invisible widgets. To extrapolate from today’s
rudimentary fragments of embodied virtuality resembles an
attempt to predict the publication of Finnegan’s Wake after
just having invented writing on clay tablets. Nevertheless
the effort is probably worthwhile.’

6. DISCUSSION

Although our approach for composing UbiComp appli-
cations builds on the foundations of established software
development approaches such as object oriented design
and component frameworks, it extends these concepts by
exposing them to the end-user to be used and configured
in dynamic and ad hoc ways. In reverse to the majority
of component-based models that have focused on software
components with an emphasis to support the programmer
our component model embraces a heterogeneous collec-
tion of artifacts in a way that is easily comprehensible by
the end-users. To achieve this, composition tends to be as
simple as possible, although some reduction in the expres-
siveness follows.

GAS-OS, the software that implements the
Plug/Synapse model, can be considered as a component
framework that determines the interfaces that components
may have and the rules governing their composition. GAS-
OS manages resources shared by artifacts, and provides
the underlying mechanisms that enable communication
(interaction) among artifacts. For example, the proposed
concept supports the encapsulation of the internal structure
of an artifact and provides the means for composition of
an application, without having to access any code that
implements the interface. Thus, our approach provides
a clear separation between computational and composi-
tional aspects of an application, leaving the second task
to ordinary people, while the first can be undertaken by
experienced designers or engineers.

The benefit of this approach is that, to a large extent,
system design is already done, because the domain and
system concepts are specified in the generic architecture;
all people have to do is realize specific instances of the
system. Composition achieves adaptability and evolution: a
component-based application can be reconfigured with low
cost to meet new requirements. The possibility to reuse
devices for several purposes—not all accounted for dur-
ing their design—opens possibilities for emergent uses of
ubiquitous devices, whereby the emergence results from
actual use.

In order to assess the Plug/Synapse conceptual model
several user evaluations and studies have been performed
including workshop demonstrations involving users27 and
a formal evaluation where users created and modified their
own applications.28 The evaluation was conducted in two
phases. First an expert review was conducted in the form
of a workshop. Subsequently, the cognitive dimensions
framework was applied to assess how well the e-Gadgets
concepts support end-users to compose and personalize
their own ubiquitous computing environments.

The combined result of the evaluation indicated that the
Plug/Synapse model apprehension was high among users,
and most were able to utilize the system and make simple
configurations by using the concepts and tools provided.
The studies revealed also that technology-aware users were
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able to use advanced features of the editor tool to define
more complex patterns of system behavior.

The component based architectural abstraction is com-
mon in several engineering disciplines (i.e., software,
buildings, etc.). Due to the properties of the digital self
of eGadgets, users can conceptualize their tasks in a vari-
ety of ways, such as stimulus-desired response, rules,
sequences and constraints between entities, etc. Conse-
quently, there will always be an initial gap between their
intentions and the resulting functionality of an artifact
composition, which they will have to bridge based on the
experience they will develop after a trial-and-error process.

Consequently, editing tools should be designed pro-
viding different levels of end user programming capa-
bilities supporting the different levels of the technical
competency of end users, and their willingness to appro-
priate the system. For the novice end-user the important
thing is the configuration/reconfiguration of artifact col-
lections for rapidly prototyping rather than programming
UbiComp applications. In that direction, the user attempts
in a trial-and-error approach rather than in formal pro-
cedural programming. Another conclusion was that when
end users are able to “program” applications by adopting
metaphors/building blocks, to which they can associate a
meaning then it is easier to embrace the proposed high-
level programming model.

The Plug/Synapse model provides a convenient abstrac-
tion for the development of small to medium sized ubiqui-
tous computing applications. These systems are powerful
enough to support everyday activities of people (such
as home control, shopping entertainment, etc.,) thus we
expect that most user-developed system will fall into these
categories. When more complex systems must be devel-
oped (i.e., involving over a dozen interacting artifacts or
more than one users), the direct management of synapses
becomes difficult, as several issues now become important
and demand the user’s attention.

For instance, these include how can goals and tasks be
distributed over artifacts, how can the distributed control
be coordinated in order to insure that the overall system
requirements are addressed, how can the system be con-
figured with minimum user intervention etc. Although in
principle such issues can be addressed via direct manipu-
lation of plugs and synapses, the cognitive load imposed
on the user and the extended learning curve may affect
the adoption and utilization of the system. We attempt to
address this problem by developing end-user tools which
would provide abstractions of the applications and support
semantically rich interaction. For example, an agent that
could learn how users use their environment could receive
user requirements and propose sets of synapses to realize
the desired behaviours.

The proposed conceptual framework and software medi-
ators (middleware, tools) have provided to our research
team and others a useful medium for exploring new

approaches on merging the physical and digital space in
AmI environments. This happened by reusing and extend-
ing our framework to more adventure and innovative appli-
cation domains examined in research projects undertaken
by our group and associate colleagues. We mention our
effort to create digital interfaces to nature, in particular
to selected species of plants, enabling the development of
synergistic and scalable mixed communities of communi-
cating artifacts and plants by providing each plant with
a GAS-compatible description of its properties and state
to enable a seamless interaction in scenarios ranging from
domestic plant care to precision agriculture.29

7. CONCLUSIONS

In this paper, we have presented an approach to resolve
the problem of building reconfigurable ubiquitous applica-
tions out of augmented objects. Everyday objects, devices
and software processes, known as artifacts, can be com-
bined in a high level programming manner into UbiComp
applications provided that they adapt to the proposed con-
ceptual framework that is incorporated into a supporting
middleware.

Towards this direction, we introduced the Plug/Synapse
conceptual model inspired by the component-based appli-
cation engineering paradigm that guides the development
of software applications from pre-fabricated software com-
ponents. The artifacts advertise their physical properties
and digital services as Plugs. Furthermore, artifacts can
collaborate via the establishment of communication chan-
nels between Plugs called Synapses.

A performance and scalability analysis of the GAS-OS
prototype based on theoretical as well as experimental data
has provided indications that our system is capable of sup-
porting building and execution of ubiquitous applications,
while a people evaluation has provided feedback in order
to assess the concepts in the preliminary phases of the
prototype implementation. This latter research has made
several inroads in the effort to empower people to actively
shape ubiquitous environments. It has demonstrated the
feasibility of letting end-users architect ubiquitous environ-
ments, though significant advances are still needed in engi-
neering enabling technology. The experiences reported in
end-user evaluation sessions suggest that an architectural
approach where users act as composers of predefined com-
ponents is a worthy approach that can be further explored.

Ongoing work at this stage, aims at designing and devel-
oping the security plug-in to extend the functionality of
GAS-OS to realizing the security policies of each arti-
fact as well as handle privacy issues in applications. Fur-
thermore, we are currently building a tool that provides a
graphical interface for creating or changing rules, based on
a node connection model. The advantage of this approach
is that rules will be changed dynamically without disturb-
ing the operation of the rest of the system and this can be
done in a high-level manner. It is clear however that the
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use of such a tool is addressed more to the developer or
the advanced user rather to an everyday end-user.
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